Received: September 10, 1984; accepted: January 13, 1985

BEITRÄGE	ZUR CH	EMIE	DES	IOD	PENTAFLUORIDS	
TEIL III.	CHELAT	ISIERU	NG	UND	STRUKTURISOMERIE	BEI
α,β-METHYI	LIERTEN	IOD(V)-α,	,β-ΕΤ	HANDIOLAT-FLUORIDE	N

HERMANN JOSEF FROHN UND WOLFGANG PAHLMANN

Fachgebiet Anorganische Chemie der Universität - Gesamthochschule - Duisburg, Lotharstraße 1 - 21, D 4100 Duisburg 1 (B.R.D.)

SUMMARY

We report metathetical reactions of IF₅ with series of α , β -trimethylsilylated ethanediolates with increasing numbers of CH₃-groups in α - and β -positions. Short lived intermediates IF₄[OC₂H_{4-n}(CH₃)_nO]X with X = Si(CH₃)₃ or IF₄ and stable chelates IF₃[OC₂H_{4-n}(CH₃)_nO] and IF[OC₂H_{4-n}(CH₃)_nO]₂ (n = 0 - 4) are observed and characterized. Time and temperature dependence of ¹⁹F-NMR-spectra in relation to degree of methylation, arrangement and stereo-chemistry are discussed referring to previously published mono- and polynuclear I(V)-compounds containing a series of monodentate alcoholates CH_{3-n}(CH₃)_nO⁻ and (CH₃)₃CCH₂O⁻ (n = 0,2,3) [1,2] and of bidentate alcoholates $-O(CH_2)_nO^-$ (n = 2,3,4,5,6,12) [1]. In contrast to aliphatic α , β -diolates the aromatic diolates 1,2-C₆H₄(O⁻)₂, 1,2-C₆Cl₄(O⁻)₂ rapidly undergo redox reactions even at low temperatures.

EINLEITUNG

In Teil II [1] konnten wir ¹⁹F-NMR-spektroskopisch und präparativ nachweisen, daß Iodpentafluorid mit trimethylsilylierten α, ω -Alkandiolaten $(CH_3)_3Si0(CH_2)_nOSi(CH_3)_3$ (n = 2,3,4,5,6,12) zu Iod(V)-alkoholat-fluoriden unterschiedlicher Konstitution und Stabilität in Abhängigkeit von der Kettenlänge n abreagiert. Mehrkernige verbrückte Verbindungen IF₄[O(CH₂)_nO]IF₄ und $\{IF_3[O(CH_2)_nO]\}_m$ (m ≥ 2) erhält man mit n ≥4. Zweikernige Iod(V)-alkoholate

0022-1139/85/\$3.30

© Elsevier Sequoia/Printed in The Netherlands

sind mit n < 4 nur intermediär nachweisbar, während hierbei einkernige Chelate IF₃[O(CH₂)_nO] und IF[O(CH₂)_nO]₂ isoliert werden können. Dagegen waren im Falle monofunktioneller Alkoholate (CH₃)_nCH_{3-n}O⁻ (n = 0,2,3) bei zunehmendem Methylierungsgrad am α -C-Atom höhere Substitutionsprodukte des IF₅ infolge von Ausweichreaktionen nicht isolierbar [2].

Im folgenden berichten wir über Metathesereaktionen von IF₅ mit Alkandiolaten [$O(CRR')_n O$] konstanter Kettenlänge n = 2 unter Bildung von Iod(V)-Fünfring-Chelaten. Dabei werden u.a. die Auswirkungen von Verzweigungen am α -und β -C-Atom im Falle von α,β -methylierten α,β -Alkandiolaten und 1,2-Benzoldiolaten auf ihre Reaktivität gegenüber IF₅ sowie die Konstitution und Stabilität der dabei gebildeten Iod(V)-Alkoholate untersucht.

DISKUSSION DER VERSUCHSERGEBNISSE

Reaktionen von $IF_5(\underline{1})$ mit silylierten Alkandiolaten $(CH_3)_3$ SiO- $C_2H_{4-n}(CH_3)_nOSi(CH_3)_3$ ($\underline{2}$) (n = 0-4) zeigen einen für kurzkettige Diolate typischen mehrstufigen Reaktionsablauf, der mit der in Teil II [1] beschriebenen Methode ¹⁹F-NMR-spektroskopisch beobachtbar und in Reaktionsschema 1 zusammengefaßt ist. Entsprechend dem zeitlichen Ablauf der Reaktion beschäftigt sich die Diskussion mit der Bildung und Abreaktion von Zwischenprodukten: Iod(V)-(β -siloxyalkanolat)-tetrafluoride ($\underline{3}$) und Di[iod(V)-tetrafluorid]- μ -(alkan- α , β -diolate) ($\underline{4}$) und mit Aussagen über Konstitutionen und Eigenschaften stabiler Endprodukte: Iod(V) - (alkan- α , β -diolat) - trifluoride ($\underline{5}$) und Iod(V) - bis(alkan- α , β -diolat) fluoride ($\underline{6}$).

Während unserer Arbeiten berichtete Buslaev [3] über Reaktionen von IF_5 mit freien Alkoholen (α , β -Alkandiole und Glyzerin-Derivate) in CH_3CN . Bei dieser NMR-spektroskopischen Arbeit wurden anscheinend zeitlich invariante Metathesegemische von Iod(V)-Verbindungen beobachtet. Die Zusammensetzung dieser Gemische war nur von den Eduktverhältnissen abhängig. Dagegen werden in unserem System über irreversible Folge- bzw. Parallelreaktionen stabile Verbindungen von analytisch einheitlichem Typ gebildet.

Reaktionsschema 1: Folge- und Parallelreaktionen beim Fluorid-Alkoholat-Austausch von IF_5 (<u>1</u>) mit bis(trimethylsilylierten) α , β -methylierten α , β -Ethandiolaten

Bildung, Konstitution und Abreaktion von Intermediären

Die Austauschgeschwindigkeit des ersten Fluorids im $IF_5(\underline{1})$ gegen eine Alkoholatgruppe ist bei geeigneten Temperatur- und Eduktverhältnissen an der Änderung der Signalform von $\underline{1}$ meßbar (Im Falle eines IF_5 -Oberschusses: Verbreiterung während, Wiedererlangung der ursprünglichen Signalform <u>nach</u> der Reaktion [1]). Mittels dieser Beobachtung sind die Reaktivitäten der untersuchten silylierten Alkoholate in Reaktion A bestimmbar (Tabelle 1). In der Reihe der α -und β -gleichmethylierten α , β -Diolate findet man abnehmende Reaktivitäten mit wachsendem Alkylierungsgrad gemäß $\underline{a} \ge \underline{d} \ge \underline{e} \ge \underline{g}$; auffällig ist hierbei, daß bei gleicher Konstitution das Diolat \underline{d} um den Faktor vier schneller reagiert als das Diastereomere \underline{e} . Bei α und β ungleichmethylierten α , β -Diolaten (Diolate mit Alkoholatfunktionen unterschiedlicher Reaktivität) \underline{b} , \underline{c} und \underline{f} , ist die Abreaktion der Alkoholatgruppe mit der stärkeren Verzweigung in α -Stellung geschwindigkeitsbestimmend.

TABELLE 1	19 _{F-N} in CF	MR-spel 1 ₃ CN (Ed	ttroskopische Verfo Juktverhältnis <u>1</u> :	lgung der Reaktion von IF ₅ (2 = 1 : 0,5): Zuordnungen ⁵ ur	(1) mit (CH ₃) ₃ siocr ¹ r ² cr ³ r ⁴ o: Iā zeitabhängigkeiten	Sti(CH ₃) ₃ (<u>2</u>)
R ¹ R ² F	2 ³ R ⁴		Reaktion A bzw. C	Intermediărprodukte neben IF5: ô/ppm I2': I2',	Reaktion B bzw. D	Endprodukte neben IF ₅ I [∞] : I' [∞]
н	H	(<u>2a</u>)	<2' (-20°C)	<u>3a</u> und/oder <u>4a</u> : -7.3(S)	τ _{1/2} 8' (-20°C)	5a ≣a
Н	н ³ н	(<u>2</u> b)	<15' (-40°C) 15' (-40°C)	<u>3</u> <u>b</u> : -7.9(S) <u>3</u> <u>b</u> ':-5.0(S,w,i.k.) 4 : 1	τ _{1/2} 10' (-40°C) (-40°C)	1 1 1 1 1 1
н	н ₃ сн ₃	(<u>3c</u>)	<25' (-20°C)	<u>3</u> <u>6</u> : -8.0(S) <u>3</u> <u>6</u> ':-2.5(S,w,1.k.) 8 : 1	T _{1/2} 5' (-20°C) (-20°C)	4 15 15
н сн ₃ в (d1-2,3-в	t CH ₃ utandiol	(<u>2d</u>) .at)	10' (-40°C)	3d und/oder 4d: -5.5(S)	τ _{1/2} 2' (-20°C) τ _{1/2} 8' (-40°C)	20
H CH ₃ C (meso-2,3	н ₃ н -Butandi	(<u>2e</u>) olat)	8' (-20°C) ► 40' (-40°C) ►	<u>3</u> e und <u>4</u> e: -4.8(S) == -5.0(S,w,i.k.)	$r_{1/2}$ 10' (-40°C) (-40°C)	ير او
н СН ₃ с	н ₃ сн ₃	(<u>2f</u>)	20' (-20°C)		A	<u>5</u> , 5f' 5 : 1
CH ₃ CH ₃ CH ₃ C S: Singul I ₂ , : I ¹ ₂ ,	H ₃ CH ₃ ett; w: = Isome	(<u>2g</u>) schwach renverh	<u>20' (-20°C)</u> ;; i.k.: intensität ältnis nach 2'; I	konstant (Bildung und Zerfa : I' [°] : Isomerenverhältnis n	<pre>11 von gleicher Größenordnur ach vollständiger Abreaktior</pre>	<u>59</u> 1ng); t _{1/2} /min.;

Abb.1. Zeitabhängige ¹⁹F-NMR-Spektren der Umsetzung von IF₅(1)mit meso-Me₃SiOCHMeCHMeOSiMe₃ (2e) (1 : 2e = 1 : 0,5) bei -40°C in CH₃CN: (a) vor Zugabe von 2e: A₄X-Typ(1); (b) direkt nach Zugabe von 2e: A₄-Typ (3e) und A₄-Typ (4e); (c) nach 10': zusätzlich ABX-Typ (5e); (d) nach 40': keine weiteren neuen Signale

Zeitlich veränderliche Singuletts von IF₅-Monosubstitutionsprodukten $\underline{3}$ bzw. $\underline{4}$, analytisch vom IF₄OR- und spektroskopisch vom A₄-Typ, werden außer mit den Liganden \underline{f} und \underline{q} im typischen Bereich für axial substituierte Iod(V)-Derivate gefunden. Die Signallagen sind vom Alkylierungsgrad des benachbarten C-Atoms abhängig, wobei Verschiebungsinkremente von 2 - 3 ppm pro Alkylgruppe auftreten {zum Vergleich: δ /ppm für CH₃OIF₄ -10.0 (CH₃CN); (CH₃)₃CCH₂OIF₄ -8.1 (CH₃CN); F₄IO(CH₂)_nOIF₄ (n = 4 - 12) -6.9 bis -8.2 (CH₃CN); (CH₃)₂CHOIF₄ -3.7 (CH₂Cl₂) [1, 2]}. Unter Berücksichtigung dieses Zusammenhanges liegen die beobachteten Signale im Erwartungsbereich und ermöglichen bei in α - und β -Position ungleichsubstituierten Liganden Zuordnungen der möglichen Konstitutionsisomere.

Die Unterscheidung der Primärprodukte $\underline{3}$, durch Reaktion A aus IF₅ ($\underline{1}$) und Silan ($\underline{2}$) gebildet, und der zweikernigen Sekundärprodukte ($\underline{4}$), in Reaktion C aus $\underline{3}$ und $\underline{1}$ entstanden, ist eingeschränkt, da $\underline{3}$ und $\underline{4}$ entweder in der Signallage (im Falle des Alkoholatrestes \underline{a} und \underline{d}) oder aufgrund der zeitlichen Abfolge (im Falle des Alkoholatrestes \underline{e}) nicht unterscheidbar sind. Bei Systemen mit ungleichen Alkoholatfunktionen (\underline{b} und \underline{c}) kann allerdings eine signifikante Beteiligung des Zwischenproduktes $\underline{4}$ ausgeschlossen werden. Die beobachteten Intensitätsverhältnisse der Produkte nach 2' Reaktionszeit I₂, : I'₂, deuten auf Isomerengemische aus $\underline{3}$ und $\underline{3}$ ' hin, während man für $\underline{4}$ zwar Signale vergleichbarer Verschiebung, aber von gleicher Intensität erwarten müßte.

Die Zwischenprodukte erweisen sich wie in den früher beschriebenen Fällen der α,β -Dialkoholate [1] als instabil, wobei $\underline{3}$ unter erneuter Me₃SiF-Eliminierung und $\underline{4}$ ggf. unter IF₅-Eliminierung in die Chelate $\underline{5}$ umgewandelt werden (Reaktion B bzw. D). Ein Zerfall von $\underline{3}$ oder $\underline{4}$ unter Bildung von Alkylfluoriden wie bei α -verzweigten Monoalkoholaten [2] wurde dagegen auch bei hoch methylierten Dialkoholaten nicht beobachtet. Mit der Abreaktion der Zwischenprodukte korrelieren ¹⁹F-NMR-spektroskopisch zeitabhängige Intensitätsverluste der A₄-Singuletts bis zur völligen Tilgung verbunden mit dem Entstehen und Anwachsen von ABX- bzw. A₂X-Systemen der Chelate $\underline{5}$.

Im Falle der Liganden \underline{a} , \underline{d} und \underline{e} kann das Schicksal der unmittelbar nach Vermischung der Reaktanden in hoher Intensität gebildeten Singuletts mehrere Halbwertzeiten lang verfolgt werden, wobei die Konstanz von $\tau_{1/2}$ für Unimolekularität der Zweitsubstitution spricht. Damit werden zwei- und mehrkernige Substitutionsprodukte zugunsten der Chelate ausgeschlossen. Bei

unterschiedlichem Methylierungsgrad in α - und β -Position (\underline{b} und \underline{c}) findet man ähnliche Konzentrations-Zeit-Relationen für Zwischenprodukte $\underline{3}$ mit nicht bzw. einfach methylierter α -Position (primäre bzw. sekundäre Alkoholatfunktion). Bei Intermediären $\underline{3}$ ' mit I-O-Bindung zum stärker α -methylierten Zentrum (sekundäre bzw. tertiäre Alkoholatfunktion) erscheint das entsprechende Singulett wenig intensiv und intensitätskonstant, solange IF₅($\underline{1}$) noch abreagiert. In diesen Fällen sind Bildungs- und Abreaktionsgeschwindigkeit des Intermediärproduktes $\underline{3}$ ' von gleicher Größenordnung, so daß $\underline{3}$ ' in dem Maße in Reaktion B verbraucht wird, wie es in Reaktion A nachgeliefert wird. Bei Diolaten \underline{f} und \underline{g} führt ein weiterer Reaktivitätsabfall dazu, daß Beobachtungen von Intermediären völlig unterbleiben. Ein höherer Methylierungsgrad bedeutet demnach eine starke Verlangsamung der Primärsubstitution (Bildung von $\underline{3}$ und $\underline{4}$). Die Zweitsubstitution (Chelatisierung) wird durch diese Gegebenheit aber nicht verlangsamt.

Im Falle von $\operatorname{OCH}_2\operatorname{C}(\operatorname{CH}_3)_2\operatorname{O}^-(\underline{c})$ und $\operatorname{OCH}(\operatorname{CH}_3)\operatorname{C}(\operatorname{CH}_3)_2\operatorname{O}^-(\underline{f})$, also beim Vorliegen von primären und sekundären Alkoholatfunktionen neben tertiären, beobachtet man, daß Isomere mit primären bzw. sekundären Alkoholatfunktionen in axialer Position ($\underline{5}\underline{c}$ und $\underline{5}\underline{f}$) mit hoher Regioselektivität gebildet werden. Die Mengenverhältnisse der Isomerengemische bei Reaktionsende $\underline{5}: \underline{5}' = I_{\infty}: I_{\omega}'$ erfahren auch bei Variation der Eduktverhältnisse $\underline{1}: \underline{2} \leq 1$ und längerer Beobachtung (T $\leq 20^{\circ}$ C) keine Veränderung; ebensowenig erfolgen in diesen und den anderen untersuchten Fällen Rückequilibrierung mit IF₅ ($\underline{1}$). Im Gegensatz zum thermodynamisch kontrollierten System bei Buslaev [3] beobachten wir in dem hier beschriebenen System die Chelatbildung als Resultat eines kinetisch kontrollierten Reaktionsablaufes.

Spektren und Konstitution von Iod(V)-alkandiolat-trifluoriden

Einige der in dieser Arbeit beschriebenen Chelate $\frac{5}{2}$ wurden früher bei Reaktionen von IF₅ mit freien Diolen HOCH₂CH₂OH (H- \underline{a} -H), HOCH₂CH(CH₃)OH (H- \underline{b} -H) und HOCH(CH₃)CH(CH₃)OH (Mischung aus dl: H- \underline{d} -H und meso: H- \underline{e} -H) ¹⁹F-NMR-spektroskopisch beobachtet [3]. Wir zeigen einen präparativen Weg zur vollständigen Reihe homologer Iod(V)-Verbindungen IF₃[OC₂H_{4-n}(CH₃)_nO] (n = 0-4) ($\underline{5}$) durch Reaktion von IF₅($\underline{1}$) mit silyliertem Diolat ($\underline{2}$) im Molverhältnis 1 : 1 auf und charakterisieren dabei die dabei erhaltenen Verbindungen ¹⁹F-NMR-spektroskopisch [Tabelle 2].

von α , β -methylierten	-40/-80°C)
TABELLE 2 ¹⁹ F-NMR-Daten und strukturelle Zuordnungen	Ethandiolat-trifluoriden des Jod(V) (CH $_3$ CN;

							1						
Ethandio!	Latsubsti	tuenten	- -	0	Chemische	Verschiel	oungen (\$/ppm) *		Kopplui	ugskons	tanten	(J/Hz)**
ın wacnu axialen Position	equat equat am Iod (V	zur orialen ')	-	δ (F _A)	δ (F _B)	$\delta^{(F_X)}$	${}^{\Delta}_{AB}$	AB	$\Delta_{\overline{AB}/X}$	J (AB)	J (AX)	J (ВХ)	J (¹ нХ)
н	ш	н	(<u>5a</u>)	-10.0	-10.0	+18.2	0.0	-10.0	28.2	1	43	43	1
Н	сн ₃	Н	(<u>5</u> p)	-13.7	-10.0	+12.2	2.0	-11.9	24.1	177	31	54	I
н сн ₃	н	Н	(<u>5</u> 5')	-11.8	-11.3	+14.7	0.5	-11.6	26.3	183	16	77	14
н	сн ₃	сн ₃	(<u>5c</u>)	-8 - 8	-8 - 8	+12.3	0.0	-8 -8	21.1	ı	43	43	I
сн ₃ сн ₃	Ħ	н	(<u>5c</u> ')	-3.7	-3.7	+16.2	0.0	-3.7	19.9	ł	48	48	I
н сн ₃	ш	сн ₃	(<u>5d</u>)	-10.6	-8.2	+14.2	2.4	-9.4	23.6	186	20	71	ł
н сн ₃	сн ₃	н	(<u>5</u> e)	-12.8	-2.3	+15.0	10.5	-7.6	22.6	179	43	32	13
н сн ₃	CH ₃	сн ₃	(<u>5</u> £)	-11.8	-5.7	+14.1	6.1	-8.8	22.9	187	47	27	F
сн ₃ сн ₃	н	сн ₃	(<u>5</u> [1)	-8.7	+4.6	+15.9	13.3	-2.1	18.0	194	35	65	I
сн ₃ сн ₃	CH ₃	сн ₃	(<u>5</u> 3)	+1.2	+1.2	+16.5	0.0	+1.2	15.3	I	33	33	I
* Δ _{AB} =	ا ^{δ(F} A)-	$\delta(F_B)$; <u>AB</u> =	[§ (F _A) + 6	δ(F _B)]/2;	$\Delta_{\overline{AB}/X} =$	$\overline{AB} - \delta(F_X)$	** : (J (AB) = J	(F_{A},F_{B})			

Die ¹⁹F-NMR-spektroskopische Untersuchung erlaubt uns,Aussagen über den Einfluß systematischer Veränderungen der Umgebung am Iod(V) durch Variation von Anzahl und Anordnung der Methylgruppen im Ethandiolatrest und damit Korrelationen zwischen ¹⁹F-NMR-Spektren und Konstitution herzustellen.

Alle ¹⁹F-NMR-Daten sind konsistent mit einem Ψ -oktaedrischen Aufbau, wobei die Diolat-Liganden eine axiale und eine äquatoriale Position besetzen. Spektroskopische Beweise für obige Substitutionsweise liefern dabei die mit den Liganden <u>c</u> und <u>e</u> gewonnenen Spektren-Typen [Tabelle 3; Abb. 1(d); Abb. 2(b)].

Die am Iod verbliebenen Fluor-Kerne bilden in Abhängigkeit von der Symmetrie der Dialkoholate A_2X oder ABX-Spinsysteme.

Die Resonanzen der zum Liganden cis-ständigen Fluor-Atome (F_A und F_B) sind zu hohem, die des trans-ständigen Fluor-Atoms (F_{χ}) zu tiefem Feld gegenüber äquatorialem Fluor im $\mathrm{IF}_5(\underline{1})$ verschoben. Die Konstitutionszuordnungen der Strukturisomeren Chelate 5 und 5' sind begründet in Verschiebungen von F_A bzw. F_B zu tieferem Feld bei zunehmendem Alkylierungsgrad am q-C-Atom des Alkoholatrestes. Analoge Verhältnisse treten auch bei Mono-Substitutionsprodukten IF₄OR auf. Einen unmittelbaren chemischen Beweis stellt dabei die Genesis der Isomeren $\mathrm{IF}_3[\mathrm{OCH}_2(\mathrm{CH}_3)_2\mathrm{O}](\underline{5}\underline{c})$ und $IF_3[OC(CH_3)_2CH_2O](5c')$ dar [Tabelle 1]. Unter der Voraussetzung, daß im Zuge der Chelatisierung (Reaktion B) keine axial-äquatorial-Isomerisierung stattfindet, entsteht aus dem Monosubstitutionsprodukt $IF_4 OCH_2C(CH_3)_2OSi(CH_3)_3$ ($\underline{3}\underline{c}$) das Chelat $\underline{5}\underline{c}$ mit axialer Orientierung des OCH_2 -Fragmentes. F_A ist gegenüber dem A_4 -System von $\frac{3}{2}$ nur wenig verschoben. Mit analoger Begründung läßt sich die Entstehung von 5d aus 3d herleiten. Ähnlich nachvollziehbar, jedoch aufgrund der Komplexität der Spektren weniger zwingend, ist die Genesis im Falle des Liganden $OCH_2CH(CH_3)O(\underline{b})$, während im Falle $OCH(CH_3)C(CH_3)_2O(\underline{f})$ die für Konstitutionsnachweise wertvollen Intermediären 3f und 3f' nicht beobachtet werden können.

Die Befunde besagen, daß die chemischen Verschiebungen cis-ständiger Fluoratome vom α -Verzweigungsgrad axialer Alkoholat-Reste stärker beeinflußt werden als vom α -Verzweigungsgrad in äquatorialer Position.

Ligand	Beobachtet	Nicht beobachtet
⁻ осн ₂ с (сн ₃) ₂ о ⁻ (<u>с</u>)	r, r ,	$r \rightarrow c_{a}^{c} \rightarrow c_{a}^{c}$ ein ABX - Spektrum
осн (сн ₃) сн (сн ₃) о_	$ = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$	zwei $A_2 X$ - Spektren
(a) (a) 6×6^{19} Abb. 2. ¹⁹ F-NMR-Spekt bai = 80° C in	ren isomerer Iod (V)-diola	h h h h h h h h

TABELLE 3 ¹⁹F-NMR-Spektrentypen und Struktur der Chelate 5c und 5e

Liganden mit Chiralitätszentren (\underline{b} , \underline{d} , \underline{e} und \underline{f}) bewirken Diastereotopie der cis-ständigen Fluoratome F_A und F_B . Die dabei beobachteten trans-Kopplungen fallen durch ihre Größe auf, weisen nur geringe Streuungen auf [J(AB) = $184^{\pm}6$ Hz] und wurden mit dieser Größenordnung bereits bei Iod(V)- [3] und W(VI)-Chelaten [5] gefunden. Ein Maß für die Diastereotopie sind die Verschiebungsdifferenzen Δ_{AB} , die maximale Werte bei Häufung von Methylgruppen an einem C-Atom ($\underline{5f}$ und $\underline{5f}$ ') oder auf einer Seite des Ethandiolatrestes ($\underline{5e}$) erreichen. Die Zuordnungen von F_A und F_B zur Stereochemie des methylierten Ethandiolatrestes waren nicht möglich. Die chemischen Verschiebungen des zum Liganden transständigen' F_X -Atoms und die Verschiebungsdifferenzen $\Delta_{\overline{AB-X}}$ zeigen bei steigendem Methylierungsgrad abfallende, aber nicht stetige Tendenzen.

Die cis-Kopplungen J(AX) und J(BX) mit Extremwerten von 16 bzw. 77 Hz beim Chelat $\underline{5}\underline{b}$ ' sind nicht ohne weiteres mit Strukturparametern korrelierbar. In zwei Fällen ($\underline{5}\underline{b}$ ' und $\underline{5}\underline{e}$) findet man eine über vier Bindungen reichende 13 bzw. 14 Hz große Kopplung eines Ethandiolat-Wasserstoffs mit dem trans-ständigen F_Y-Atom.

Iod(V)-bis(alkandiolat)-fluoride

Setzt man die Metathesereaktion über die Stufe der Monochelatisierung hinaus fort (Reaktionsschema 1: Reaktion E), so beobachtet man ¹⁹F-NMRspektroskopische Löschung der A₂X- bzw. ABX-Systeme bei gleichzeitiger Bildung von Me₃SiF. Unter isothermen Bedingungen nimmt die Geschwindigkeit der Zweitchelatisierung näherungsweise mit zunehmendem α , β-Methylierungsgrad der Diolate <u>a</u> - <u>g</u> ab. Mit Eduktverhältnissen von IF₅(<u>1</u>) : silyliertem Diolat (<u>2</u>) = 1 : 2 können aus derartigen Lösungen spirocyclische Dichelate IF[OC₂H_{4-n}(CH₃)_n]₂ n = 0 - 4 (<u>6</u>), die thermisch weniger stabil, gegen Hydrolyse aber beständiger sind als die entsprechenden Monochelate <u>5</u>, isoliert werden.

Im Falle von Diolat-Liganden höchster Symmetrie $^{-}OCH_2CH_2O^{-}(a)$ und $^{-}OC(CH_3)_2C(CH_3)_2O^{-}(g)$ erhält man Enantiomere, d.h. ^{19}F -NMR-spektroskopisch beobachtet man ein Singulett. Dagegen liefern Liganden mit niederer Symmetrie Strukturisomere. Die Tatsache, daß bis zu 16 Strukturisomere auftreten können, erklärt dabei die drastische Intensitätsschwächung der Resonanzsignale des Reaktionsprodukts im ^{19}F -NMR-Spektrum, was dazu führt, daß in einigen Fällen [Tabelle 4] die Nachweisgrenze nicht mehr überschritten wird.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н Н Н (a) Н Н Н (a) Н Н СН ₃ Н (b) Н СН ₃ СН ₃ (c) Н СН ₃ Н (c) Н СН ₃ Н (d) Н СН ₃ СН ₃ (d) Н СН ₃ СН ₃ (d) Н СН ₃ СН ₃ (f) (f)	c _{2v}	strukturisomeren	Beobachtete ⁻⁷ F-NMR-Resonanzen & / ppm [Solvens, Temperatur]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H H CH ₃ H (b) H H CH ₃ CH ₃ (c) H CH ₃ H (d) H CH ₃ H CH ₃ (d) H CH ₃ CH ₃ H (e) H CH ₃ CH ₃ (d)		x -1	+ 9.0 (s,b) [CH ₃ CN, -30°C] *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H H CH ₃ CH ₃ (c) H CH ₃ H CH ₃ (d) H CH ₃ CH ₃ H (e) H CH ₃ CH ₃ CH ₃ (f)	c ₁	16	ı
H CH ₃ H CH ₃ ($\frac{1}{2}$) C ₂ C ₂ 4	H CH ₃ H CH ₃ (d ¹) H CH ₃ CH ₃ H (e ¹) H CH ₃ CH ₃ H (e ¹)	ຽ	4	t
H $CH_3 CH_3 H$ (e) C_s 4 +22.9(s,b), +4.3(s,b) [$CH_3CN, -^{-1}$ H $CH_3 CH_3 CH_3 CH_3 CH_3 (\underline{f})$ (c) C_1 16 +20.0(s,b), +9.0(s,b) [$CH_3CN, -^{-1}$ CH ₃ $CH_3 CH_3 CH_3 CH_3 (Q)$ (c) C_{2V} 1 - 1.5(s) [$CH_2CL_2, -55^{\circ}c$] oder + 1.5(s) [$CH_2CL_2, -55^{\circ}c$] oder	H CH ₃ CH ₃ H (<u>e</u>) H CH ₃ CH ₃ CH ₃ (<u>f</u>)	c ₂	4	-
H CH ₃ CH ₃ CH ₃ CH ₃ (\underline{f}) C ₁ C ₁ 16 +20.0(s,b), +9.0(s,b) [CH ₃ CN,- ⁴ CH ₃ CN,- ⁴ CH ₃	н СН ₃ СН ₃ СН ₃ СН ₃ (<u>f</u>)	ຽ້	4	+22.9(s,b), +4.3(s,b)[CH ₃ CN,-90°C]
CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ (<u>g</u>) C _{2v} 1 - 1.5(s) [CH ₂ Cl ₂ ,-55°c] oder + 1.5(s) [CH ₂ Cl ₂ ,+30°c] **	1 I	c ₁	16	+20.0(s,b), +9.0(s,b)[CH ₃ CN,-85°C]
	сн ₃ сн ₃ сн ₃ сн ₃ (<u>ч</u>)	c _{2v}	۲	<pre>- 1.5(s)[CH₂Cl₂,-55°C] oder + 1.5(s)[CH₂Cl₂,+30°C] **</pre>

¹H-NMR [CCl₄, 20°C] : 1.23 (S, 12 H), 1.26 (S, 12 H)

**

Aufgrund von Symmetriebetrachtungen mögliche Anzahl von strukturisomeren TABELLE 4

Umsetzungen von Iodpentafluorid mit silylierten ortho-Hydrochinonen

Um den Einfluß des CCO-Bindungswinkels im α , β -Diolat auf die Ausbildung von Fünfringchelaten zu untersuchen, wurden aromatische ortho-Diolate mit in die Metathesereaktion aufgenommen. Im Gegensatz zu den Ethandiolaten stellen die ortho-Hydrochinone Reduktionsmittel dar.

Bei Umsetzung von IF₅ mit 1,2-C₆H₄(OSiMe₃)₂ bzw. 1,2-C₆Cl₄(OSiMe₃)₂ in CH₂Cl₂ beobachtet man bereits ab -50°C Redoxreaktionen. 1,2-C₆H₄(OSiMe₃)₂ reagiert heftig und unkontrollierbar, während 1,2-C₄Cl₄(OSiMe₃)₂ unter I₂- und Me₃SiF-Bildung abreagiert. Weder Intermediäre (u.a. keine Anderung der IF₅-Auflösung) noch neue IF₅-Verbindungen wurden beobachtet. Parallel zu (CH₃)₃SiF und I₂ bildete sich ein roter Niederschlag des entsprechenden Chinons 1,2-C₆Cl₄O₂ [6], das nach hydrolytischer Aufarbeitung des Ansatzes quantitativ isolierbar war.

Analog zu diesem ortho-Hydrochinon reagierte auch das para-Isomere: 1,4- $C_6Cl_4(OSiMe_3)_2$. Hier erhielt man nach Aufarbeitung gelbe Kristalle des entsprechenden 1,4- $C_6Cl_4O_2$ [6].

EXPERIMENTELLER TEIL

Bestimmungen der Neutralisations- und Redox-Aquivalente (NA und RA), des Fluorgehalts und Gerätedaten zur ¹⁹F-NMR-Spektrometrie wurden in Teil I [2], Daten zu ¹H-NMR- und IR-Spektrometrie in Teil II [1] angegeben.

Trimethylsilylierte Alkoholate

Bis(trimethylsily1) diolate $Me_3SiOC_2H_{4-n}(CH_3)_nOSiMe_3$ ($\underline{2}$) wurden durch Behandlung der freien Diole mit Silylierungsmitteln erhalten: $\underline{2a}$ [7], $\underline{2b}$ [7] und $\underline{2g}$ [8] aus HOCH₂CH₂OH, dl-HOCH₂CH(CH₃)OH bzw. HOC(CH₃)₂C(CH₃)₂OH und Me_3SiCl/NEt_3 , $\underline{2c}$ aus HOCH₂C(CH₃)₂OH[9] und CH₃C(OSiMe₃)NSiMe₃ und $\underline{2d}$, $\underline{2e}$ und $\underline{2f}$ aus dl-HOCH(CH₃)CH(CH₃)OH, meso-HOCH(CH₃)CH(CH₃)OH bzw. dl-HOCH(CH₃)C(CH₃)₂OH mit NH(SiMe₃)₂.

Das Diol dl-HOCH(CH₃)C(CH₃)₂OH wurde wie folgt synthetisiert: nach Schützen einer OH-Funktion im 2,3-Butandiolat (1:1-Mischung meso,dl) mit einer Benzyl-Gruppe wurde mit dem Iodoxol $C_6H_4I(0_2CCH_3)_3OC(0)[10]$ zum Keton oxidiert, nachfolgend mit CH₃MgI methyliert und die Schutzgruppe mit Na/¹PrOH wieder abgespalten.

TABELLE 5 Darstellung und Char	akterisierung von α, β -methy	lierten Iod(V)-et	andiolat - fluor:	iden
Verbindung	Präparationsmethode	Analytische Chan	cakterisierung *	
Eigenschaften	(Reaktionszeit, -temp.)	NĂ / M aus NĂ	RĂ / M aus RÄ	F (ber. für)
	Ausbeuce			
$IF_3[OCH_2^{C(CH_3)}, 2^{O}] (\underline{5c}, \underline{5c}^{1})$	A 			
gelbl. Öl. Zers. 20°C	(12 h, -35°C)	/3.8 (68.00)	49.1 (45.34)	(56.02) 9.61
1.1. CH ₃ CN, CH ₂ Cl ₂	90 %	295.1 (272.01)	294.8 (272.01)	$(C_4 H_8 F_3 I_0)$
$IF_3[d1 - 0(CHCH_2)_30]$ (5d)	В			
farhl Krist Jore 2000	(3h,-40°C)	65.7 (68.00)	43.2 (45.34)	19.6 (20.95)
L. CH ₃ CN, CH ₂ Cl ₂	53 &	262.6 (272.01)	259.1 (272.01)	$(C_4H_8F_3IO_2)$
IF[d1-O(CHCH2), 0], (6d)	В			
forth Vrict Br/100/17.00	(20 h,-20°C)	148.0 (161.05)	49.2 (53.68)	5.2 (5.90)
1. CH ₃ CN, CH ₂ Cl ₂	nicht bestimmt	295.9 (322.10)	295.1 (322.10)	$(c_{8H_16^{FIO_4}})$
IF, [OC (CH ₂), C (CH ₂), O] (5g)	c			
	(12 h,+20°C)	76.0 (75.01)	49.2 (50.01)	17.0 (18.99)
<pre>tarbl.Krist., Fp // C(Zers.)</pre>	34 %	304.0 (300.06)	295.2 (300.06)	(C,H, F, IO,) **
$1.CH_3CN$, CH_2CL_2 , s.1. CCL_3F				6 12 3 2
$IF[OC(CH_3)_2C(CH_3)_2O]_2$ (<u>69</u>)	c			
farh] Krist Fn 62°r(7ers)	(24 h,+20°C)	175.0 (189.11)	64.5 (63.04)	4.6 (5.02)
1. $cH_{a}cN$, $cH_{b}cL_{a}$, $ccI_{3}F$	16 %	350.0 (378.22)	387.0 (378.22)	$(c_{12}H_{24}FIO_{4})$
* NÄ: Neutralisationsäguivalen	t/q(mol) ⁻¹ ; RÄ: Redoxäqu	ivalent/q(mol) ⁻¹		

M: Molare Masse/g mol⁻¹, berechnet aus NÄ bzw. RÄ gem. [2]; F: Fluorgehalt/%. b ; n , HO 5

** C,H-Bestimmung von <u>5g</u>: C 23.10 (24.02), H 3.94 (4.03) %.

 $\underline{o}\text{-}C_6H_4(\text{OSiMe}_3)_2[11]$ wurde aus $\underline{o}\text{-}C_6H_4(\text{ONa})_2$ und Me_3SiCl in THF hergestellt.

 \underline{o} -C₆Cl₄(OSiMe₃)₂ und \underline{p} -C₆Cl₄(OSiMe₃)₂[12] wurden durch Oxidation von C₆Cl₅OH mit HNO₃ zu o-C₆Cl₄O₂ und p-C₆Cl₄O₂[6], anschließender Reduktion der getrennten Chinone zu den entsprechenden Hydrochinonen mit SO₂/H₂SO₄ und Silylierung mit Me₃SiCl/NEt₃ dargestellt.

Iod(V) - alkoholat - fluoride (allgemeine Präparationsvorschrift)

Die präparative Darstellung, Eigenschaften und analytischen Daten von $IF_3[OCH_2CH_2O](\underline{5a})$ und $IF[OCH_2CH_2O]_2(\underline{6a})$ wurden in Teil II[1] beschrieben.

 IF_5 wird in 10 - 20 ml Solvens (Solvens und Konzentration siehe unter Methoden) unter Rühren innerhalb von <u>ca</u>. 30' bei -50°C mit dem jeweiligen bis(trimethylsilylierten) Diolat in der entsprechenden stöchiometrischen Menge versetzt; man läßt unter den in Tabelle 5 aufgeführten Bedingungen reagieren und arbeitet nach einer der angegebenen Methoden auf, wobei Produkte nach Isolierung bei 0°C und 10⁻³ Pa von Solvensresten befreit werden.

Methode	A:	IF_5/CH_3CN (ca	. 2.0	molar);	Rückstandsprodukt
		nach Entfernu	ng des	s Solvens	s.

- Methode B: IF₅/CH₂Cl₂ (<u>ca</u>. 1.5 molar); Isolierung des Produkts nach Einengung durch Kristallisation und Filtration bei -50°C.
- Methode C: IF_5/CH_3CN (<u>ca</u>. 2.0 molar); Isolierung als Rückstandsprodukt, Reinigung durch Umkristallisation aus CH_3CN bei -30°C.

DANK

Herrn Prof. Dr. P. Sartori danken wir für die Unterstützung der Arbeit.

LITERATUR

- 1 H. J. Frohn und W. Pahlmann, J. Fluorine Chem. 26 (1984) 243.
- 2 H. J. Frohn und W. Pahlmann, J. Fluorine Chem. 24 (1984) 219.
- 3 Yu. A. Buslaev, Yu. V. Kokunov, S.A. Sharkov und V.F. Sukhoverkhov, Koord. Khim. 7 (1981) 1065.
- 4 Yu. V. Kokunov, S. A. Sharkov und Yu. A. Buslaev, Koord. Khim. <u>8</u> (1982) 55.

- 5 Yu. V. Kokunov, V. A. Bochkareva, Yu. D. Chubar und Yu. A. Buslaev, Koord. Khim. 6 (1980) 1205.
- 6 R. Reed jr., J. Am. Chem. Soc. 80 (1958) 219.
- 7 M. M. Sprung und L. S. Nelson, J. Org. Chem. 20 (1955) 1750.
- 8 R. A. Hall und N. New, Brit. Pat. 800, 554 (1958); C. A. <u>53</u> (1959) 12728 g.
- 9 G. Hearne, M. Tamele und W. Converse, Ind. Eng. Chem. 33 (1941) 805
- 10 D. B. Dess und J. C. Martin, J. Org. Chem. 48 (1983) 4156.
- 11 F. A. Henglein und J. Krämer, Chem. Ber. 92 (1959) 2585.
- 12 S. P. Narula, Ind. J. Chem. (Oxford) 5 (1967) 346.